The Syntheses of Hg_2P_3X Where X = Cl and Br

P. C. DONOHUE

Central Research Department,* E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898

Received April 17, 1972

Two new mercury halophosphides Hg₂P₃Cl and Hg₂P₃Br, have been prepared. Hg₂P₃Cl has the monoclinic Cd₂P₃Cl structure a = 7.840 Å, b = 8.849 Å, c = 7.593 Å, $\beta = 98.63^{\circ}$. Hg₂P₃Br has a related orthorhombic structure a = 8.014 Å, b = 8.901 Å, c = 7.822 Å. Both are black semiconductors stable in HCl and HNO₃.

Introduction

Mercury forms many pnictide halides; Hg_4 -As₂X₃ (X = Cl, Br, I), Hg_2AsCl_2 , Hg_3PCl_2 , Hg₂SbBr₂ (1), HgAsCl, Hg₂AsBr₂, Hg₃As₂I₄ (2), HgSbBr, Hg₄Sb₂I₃, Hg₃SbI₄ (3, 4), Hg₂SbBr₅, HgSbBr₅ (5), Hg₂SbCl₅, HgSbCl₅ (6), Hg₃PCl₃, Hg₄As₂Cl₃ (8). In most cases, only syntheses, stoichiometry, and lattice constants are reported; little is known of the structures or electrical properties. Most are either black or colored, suggesting they are semiconductors. This paper reports an extension of the halopnictide series to include the compounds Hg_2P_3X where X = Cl and Br, the first examples in which the pnictide is in excess of the halide.

Experimental

Hg₂P₃Cl and Hg₂P₃Br were prepared by reaction of HgCl₂ or HgBr₂ with Hg and P weighed in stoichiometric proportions and sealed *in vacuo* in silica tubes ($\frac{5}{8}$ in. o.d. $\times \frac{3}{8}$ in. i.d. $\times 6$ in.). All syntheses were carried out in a pressure vessel with 150–200 atm nitrogen surrounding the silica reaction tube to prevent explosion due to high vapor pressures developed during reactions. Typical conditions were: sample held at 500°C for 10 hr, slowly cooled 20 hr to 300°C, and then rapidly cooled to room temperature by turning off furnace power. For the preparation

* Contribution no. 1915.

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. of Hg₂P₃Cl, a charge of about 20 g was effective while 1 or 2 g charges in tubes of the same volume failed to yield the phase. This suggests that some internally developed pressure is necessary to stabilize the compound. Traces of other phases, including PCl₃ and Hg, were present; these were removed by washing in concentrated HNO₃. Nearly 100% yields were obtained for Hg_2P_3Br . Solid solutions were prepared in a similar manner. Powder X-ray diffraction was carried out on all samples using a Hägg-Guinier camera with $CuK\alpha$, radiation and an internal standard of high-purity KCl (a = 6.29310 Å at 25°C). The lattice constants were refined by a least-squares technique. Single-crystal determinations of space groups utilized Buerger precession camera techniques. Electrical measurements were made using a four-probe technique between 300 and 4.2 K. A Du Pont differential scanning calorimeter and a Du Pont 700 thermal analyzer were used for thermal analyses.

Results and Discussion

Hg_2P_3Cl

The chlorophosphide forms as black shiny crystals insoluble in strong acids.

Anal. Calcd Cl, 6.69%; P, 17.54%. Found Cl, 6.69 \pm 0.2%; P, 17.11 \pm 0.3%. It has monoclinic space group C2/c with a = 7.840(1) Å, b =8.849(1) Å, c = 7.593(1) Å, $\beta = 98.63^{\circ}$. The Guinier pattern is shown in Table I. Decomposition in argon begins at about 400°C.

TABLE I GUINIER X-RAY POWDER DIFFRACTION PATTERNS

	Hg ₂ P ₃ Br				Hg ₂ P ₃ Cl			
Ι	hkl	d(obsd)	d(calcd)	I	hkl	d(obsd)	d(calcd)	
20	110	5.9493	5.9556	40	111	4.8805	4.8780	
10	111	4.7344	4.7384	75	111	4.3728	4.3711	
70	020	4.4488	4.4504	75	200	3.8752	3.8746	
80	200	4.0056	4.0069	90	021	3.8123	3.8107	
45	021	3,8663	3.8681	75	002	3.7547	3.7528	
95	102	3.5151	3.5147	60	-112	3.3313	3.3311	
95	121	3.4839	3.4836	85	112	3.0055	3.0049	
70	211	3.3096	3.3104	50	-2 0 2)	2 9238	2.9236	
40	112	3.2681	3.2691		2 2 0)	2.7250	(2.9145	
75	220	2.9773	2.9778	30	022	2.8618	2.8616	
80	202	2.7981	2.7988	100	-2 2 1	2.8276	2.8266	
100	2 2 1	2 7833	(2.7830	10	130	2.7566	2.7560	
	1 3 0)	2.7055	(2.7824	15	-1 3 1	2.6320	2.6330	
95	122	2.7584	2.7583	65	221	2.6193	2.6190	
65	212	2,6698	2.6699	10	131	2.5444	2.5436	
25	131	2.6213	2.6215	5	202	2.5145	2.5138	
60	311	2.4314	2.4318	10	310	2.4791	2.4795	
35	113	2.3882	2.3884	75	-1 1 3	2.3996	2.3992	
15	222	2.3691	2.3692	60	-132	2.2807	2.2801	
95	023	2.2497	2.2497	40	311	2.2598	2.2595	
90	302	2.2060	2.2058	80	040	2.2113	(2.2116	
75	321	2.1982	2.1981	15	113)	0.1675	(2.2105	
60	123	2.1659	2.1659	45	132	2.1675	2.1669	
60	041	2.1405	2.1403	5	041	2.1222	2.1214	
1.5	312)	0.1004	(2.1411	25	-223	2.0143	2.0140	
15	213	2.1224	2.1223	45	312	1.9436	1.9440	
15	141	2.0679	2.0078	20	3 3 0j		(1.9430	
25	232	2.0339	2.0339	20	2 2 1	1.9377	1.9373	
40	400	2.0034	2.0035	50	-331)	1 0210	(1.9347	
30 25	330	1.9032	1.9652	J0 75	1 2 3	1.9210	(1.9207	
35	322	1.9700	1,9704	75	-1 5 5	1 9042	1.9037	
45	223	1.9010	1.9010		-313	1.7045	1.9054	
55	240	1 9350	1 9355	40	-114	1 8470	1 8480	
5	042	1.9494	1.9494	-10	-114	1.0479	(1.8315	
10	331	1.9340	1.9341	50	241	1.8316	1 8284	
20	133)	1.7242	(1.9025	20	_332	1 8112	1 8109	
20	104	1.9019	1.9025	15	133	1.8054	1.8051	
55	411	1 8964	1.8963	40	-421	1.0024	1.0001	
60	241	1.8878	1.8879	10	420	1.7747	1.7745	
50	142	1.8802	1.8801	35	-242	1.7646	1.7638	
60	420	1.0002	(1.8269	10	114)	11/010	(1.7301	
00	313	1.8267	1.8261		024	1.7302	1.7274	
20	024	1.7904	1.7903	15	1 5 1)		(1.6935	
10	402	1.7832	1.7831		-4 2 2	1.6937	1.6968	
15	332	1.7704	1.7702	10	421	1.6764	1.6761	
75	204)		(1.7574	15	151)		(1.6690	
	2 3 3	1.7577	1.7596		-224	1.6688	1.6655	
40	4 1 2)		(1.7484	20	3 3 2	1.6509	1.6511	
	124	1.7480	1.7472	15	313	1.6467	1.6466	
:20	242	1.7420	1.7418	10	-3 3 3)		(1.6260	
10	150	1.7381	1.7378		402)	1.6256	1.6250	
15	214	1.7241	1.7241	35	-314	1.6121	1.6121	
				20	204	1.5973	1.5974	
				35	-134	1.5911	1.5910	
				10	-243	1.5813	1.5814	

Hg₂P₃Cl is a semiconductor ($\rho_{298K} = 6.89 \times 10^8 \ \Omega$ -cm) with a small degree of photoconductivity. The cell dimensions are similar to those of Cd₂P₃Cl (9); however, the volume is smaller, 520.8 Å³ compared to 532.6 Å³ for Cd₂P₃Cl.

Hg_2P_3Br

The bromophosphide also occurs as black shiny crystals insoluble in strong acid. Anal. Calcd Hg, 69.89%; P, 16.19%; Br, 13.92%. Found Hg, 70.10 \pm 0.5%; P, 16.8 \pm 0.3%; Br, 13.47 \pm 0.3%. Calcd 4(Hg₂P₃Br)/cell = 6.832 g/cm³. Density obsd = 6.81 \pm 0.02 g/cm³. This compound is orthorhombic with space group *Pbcn*. Cell dimensions are a = 8.014(1) Å, b = 8.901(1) Å, c = 7.822(1) Å. The powder pattern is shown in Table I. Hg₂P₃Br is a semiconductor; $\rho_{298K} = 6.0 \times 10^7 \Omega$ -cm.

The structure of the bromophosphide may be related to the Cd_2P_3Cl type by an adjustment of β to 90°. A structure determination would be of interest to compare the structures.

Acknowledgments

Electrical measurements were made by Mr. J. L. Gillson. Lattice constants and space groups were determined by Mrs. C. M. Foris. Mr. D. W. Reutter and Mr. F. C. Diffendall are thanked for assistance in sample preparation and Dr. W. Jietschko is acknowledged for helpful discussions.

References

- 1. H. PUFF, J. BERG, AND H. GOTTA, Naturwissenschaften 52, 452 (1965).
- 2. H. PUFF, R. SKRABS, H. GOTTA, AND P. BLUNK, Naturwissenschaften 52, 494 (1965).
- 3. H. PUFF AND H. GOTTA, Naturwissenschaften 51, 535 (1964).
- H. PUFF AND H. GOTTA, Z. Anorg. Allg. Chem. 333, 280 (1964).
- 5. S. PRASAD AND L. P. PANDEY, J. Ind. Chem. Soc. 41, 771 (1964).
- S. PRASAD AND N. P. SINGH, J. Ind. Chem. Soc. 42, 195 (1965).
- 7. P. LEMOULT, C.R. Acad. Sci. 145, 1175 (1907).
- 8. H. PUFF, Angew. Chem. 74, 659 (1962).
- 9. P. C. DONOHUE, J. Solid State Chem., accepted for publication.