The Syntheses of $\mathbf{H g}_{2} \mathbf{P}_{3} \mathbf{X}$ Where $\mathbf{X = C l}$ and $\mathbf{B r}$

P. C. DONOHUE
Central Research Department,* E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898

Received April 17, 1972

Abstract

Two new mercury halophosphides $\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Cl}$ and $\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Br}$, have been prepared. $\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Cl}$ has the monoclinic $\mathrm{Cd}_{2} \mathrm{P}_{3} \mathrm{Cl}$ structure $a=7.840 \AA, b=8.849 \AA, c=7.593 \AA, \beta=98.63^{\circ} . \mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Br}$ has a related orthorhombic structure $a=8.014 \AA, b=8.901 \AA, c=7.822 \AA$. Both are black semiconductors stable in HCl and HNO_{3}.

Introduction

Mercury forms many pnictide halides; $\mathrm{Hg}_{4}{ }^{-}$ $\mathrm{As}_{2} \mathrm{X}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}), \mathrm{Hg}_{2} \mathrm{AsCl}_{2}, \mathrm{Hg}_{3} \mathrm{PCl}_{2}$, $\mathrm{Hg}_{2} \mathrm{SbBr}_{2}$ (1), $\mathrm{HgAsCl}, \mathrm{Hg}_{2} \mathrm{AsBr}_{2}, \mathrm{Hg}_{3} \mathrm{As}_{2} \mathrm{I}_{4}$ (2), $\mathrm{HgSbBr}, \mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}, \mathrm{Hg}_{3} \mathrm{SbI}_{4}(3,4), \mathrm{Hg}_{2} \mathrm{SbBr}_{5}$, $\mathrm{HgSbBr}_{5}(5), \mathrm{Hg}_{2} \mathrm{SbCl}_{5}, \mathrm{HgSbCl}_{5}$ (6), $\mathrm{Hg}_{3} \mathrm{PCl}_{3}$, $\mathrm{Hg}_{5} \mathrm{P}_{2} \mathrm{Br}_{4}$ (7), $\mathrm{Hg}_{2} \mathrm{PCl}_{2}, \mathrm{Hg}_{2} \mathrm{PBr}_{2}, \mathrm{Hg}_{3} \mathrm{P}_{2} \mathrm{Cl}_{2}$, $\mathrm{Hg}_{4} \mathrm{As}_{2} \mathrm{Cl}_{3}$ (8). In most cases, only syntheses, stoichiometry, and lattice constants are reported; little is known of the structures or electrical properties. Most are either black or colored, suggesting they are semiconductors. This paper reports an extension of the halopnictide series to include the compounds $\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{X}$ where $\mathrm{X}=\mathrm{Cl}$ and Br , the first examples in which the pnictide is in excess of the halide.

Experimental

$\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Cl}$ and $\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Br}$ were prepared by reaction of HgCl_{2} or HgBr_{2} with Hg and P weighed in stoichiometric proportions and sealed in vacuo in silica tubes ($\frac{5}{8}$ in. o.d. $\times \frac{3}{8}$ in. i.d. $\times 6$ in.). All syntheses were carried out in a pressure vessel with $150-200 \mathrm{~atm}$ nitrogen surrounding the silica reaction tube to prevent explosion due to high vapor pressures developed during reactions. Typical conditions were: sample held at $500^{\circ} \mathrm{C}$ for 10 hr , slowly cooled 20 hr to $300^{\circ} \mathrm{C}$, and then rapidly cooled to room temperature by turning off furnace power. For the preparation

[^0]of $\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Cl}$, a charge of about 20 g was effective while 1 or 2 g charges in tubes of the same volume failed to yield the phase. This suggests that some internally developed pressure is necessary to stabilize the compound. Traces of other phases, including PCl_{3} and Hg , were present; these were removed by washing in concentrated HNO_{3}. Nearly 100% yields were obtained for $\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Br}$. Solid solutions were prepared in a similar manner. Powder X-ray diffraction was carried out on all samples using a Hägg-Guinier camera with $\mathrm{Cu} K \alpha$, radiation and an internal standard of high-purity $\mathrm{KCl}\left(a=6.29310 \AA\right.$ at $\left.25^{\circ} \mathrm{C}\right)$. The lattice constants were refined by a least-squares technique. Single-crystal determinations of space groups utilized Buerger precession camera techniques. Electrical measurements were made using a four-probe technique between 300 and 4.2 K. A Du Pont differential scanning calorimeter and a Du Pont 700 thermal analyzer were used for thermal analyses.

Results and Discussion

$\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Cl}$
The chlorophosphide forms as black shiny crystals insoluble in strong acids.
Anal. Calcd Cl, 6.69% P, 17.54%. Found Cl, $6.69 \pm 0.2 \% ; \mathrm{P}, 17.11 \pm 0.3 \%$. It has monoclinic space group $C 2 / c$ with $a=7.840(1) \AA, b=$ 8.849(1) $\AA, c=7.593(1) ~ \AA, \beta=98.63^{\circ}$. The Guinier pattern is shown in Table I. Decomposition in argon begins at about $400^{\circ} \mathrm{C}$.

TABLE I
Guinier X-ray Powder Diffraction Patterns

$\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Br}$				$\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Cl}$			
I	$h k l$	d (obsd)	d (calcd)	I	hkl	d (obsd)	d (calcd)
20	110	5.9493	5.9556	40	-111	4.8805	4.8780
10	111	4.7344	4.7384	75	111	4.3728	4.3711
70	020	4.4488	4.4504	75	200	3.8752	3.8746
80	200	4.0056	4.0069	90	021	3.8123	3.8107
45	021	3.8663	3.8681	75	002	3.7547	3.7528
95	102	3.5151	3.5147	60	-112	3.3313	3.3311
95	121	3.4839	3.4836	85	112	3.0055	3.0049
70	211	3.3096	3.3104	50	-202	2.9238	$\{2.9236$
40	112	3.2681	3.2691		220 f		2.9145
75	220	2.9773	2.9778	30	022	2.8618	2.8616
80	202	2.7981	2.7988	100	-221	2.8276	2.8266
100	221	2.7833	$\{2.7830$	10	130	2.7566	2.7560
	130		$\{2.7824$	15	-131	2.6320	2.6330
95	122	2.7584	2.7583	65	221	2.6193	2.6190
65	212	2.6698	2.6699	10	131	2.5444	2.5436
25	131	2.6213	2.6215	5	202	2.5145	2.5138
60	311	2.4314	2.4318	10	310	2.4791	2.4795
35	113	2.3882	2.3884	75	-113	2.3996	2.3992
15	222	2.3691	2.3692	60	-132	2.2807	2.2801
95	023	2.2497	2.2497	40	311	2.2598	2.2595
90	302	2.2060	2.2058	80	040	2.2113	\{2.2116
75	321	2.1982	2.1981		113)		2.2105
60	123	2.1659	2.1659	45	132	2.1675	2.1669
60	041	2.1405	\{2.1403	5	041	2.1222	2.1214
	312)		\{2.1411	25	-223	2.0143	2.0140
15	213	2.1224	2.1223	45	312	1.9436	1.9440
75	141	2.0679	2.0678		3301		$\{1.9430$
25	232	2.0359	2.0359	20	400	1.9377	1.9373
40	400	2.0034	2.0035		-331)		1.9347
50	330	1.9852	1.9852	50	240	1.9210	1.9207
35	322	1.9766	1.9764	75	-133		(1.9037
45	223	1.9616	1.9616		-313	1.9043	\{1.9034
35	004	19558	19555		042		1.9053
5	240	1.9454	1.9454	40	-114	1.8479	1.8480
5	042	1.9340	1.9341	30	331	1.8316	\{1.8315
10	331	1.9242	1.9242		241 (\{1.8284
20	133	1.9019	11.9025	20	-332	1.8112	1.8109
	104		1.8997	15	133	1.8054	1.8051
55	411	1.8964	1.8963	40	-421	1.7827	1.7826
60	241	1.8878	1.8879	10	420	1.7747	1.7745
50	142	1.8802	1.8801	35	-242	1.7646	1.7638
60	420	1.8267	11.8269	10	114	1.7302	1.7301
	313		\{1.8261		024)		(1.7274
20	024	1.7904	1.7903	15	--151	1.6937	1.6935
10	402	1.7832	1.7831		-422)		\{1.6968
15	332	1.7704	1.7702	10	421	1.6764	1.6761
75	2043	1.7577	1.7574	15	151	1.6688	$\{1.6690$
	2331		\{1.7596		-224		\{1.6655
40	4127	1.7480	(1.7484	20	332	1.6509	1.6511
	124		(1.7472	15	313	1.6467	1.6466
20	242	1.7420	1.7418	10	-333)	1.6256	(1.6260
10	150	1.7381	1.7378		402)	1.6256	\{1.6250
15	214	1.7241	1.7241	35	-314	1.6121	1.6121
				20	204	1.5973	1.5974
				35	-134	1.5911	1.5910
				10	-243	1.5813	1.5814

$\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Cl}$ is a semiconductor $\left(\rho_{298 \mathrm{~K}}=6.89 \times\right.$ $10^{8} \Omega-\mathrm{cm}$) with a small degree of photoconductivity. The cell dimensions are similar to those of $\mathrm{Cd}_{2} \mathrm{P}_{3} \mathrm{Cl}(9)$; however, the volume is smaller, $520.8 \AA^{3}$ compared to $532.6 \AA^{3}$ for $\mathrm{Cd}_{2} \mathrm{P}_{3} \mathrm{Cl}$.
$\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Br}$
The bromophosphide also occurs as black shiny crystals insoluble in strong acid. Anal. Calcd Hg, 69.89%; P, 16.19%; Br, 13.92%. Found $\mathrm{Hg}, 70.10 \pm 0.5 \% ; \mathrm{P}, \quad 16.8 \pm 0.3 \%$; $\mathrm{Br}, 13.47 \pm 0.3 \%$. Calcd $4\left(\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Br}\right) / \mathrm{cell}=6.832$ $\mathrm{g} / \mathrm{cm}^{3}$. Density obsd $=6.81 \pm 0.02 \mathrm{~g} / \mathrm{cm}^{3}$. This compound is orthorhombic with space group Pbcn. Cell dimensions are $a=8.014(1) \AA$, $b=8.901(1) \AA, c=7.822(1) \AA$. The powder pattern is shown in Table I. $\mathrm{Hg}_{2} \mathrm{P}_{3} \mathrm{Br}$ is a semiconductor; $\rho_{298 \mathrm{~K}}=6.0 \times 10^{7} \Omega-\mathrm{cm}$.

The structure of the bromophosphide may be related to the $\mathrm{Cd}_{2} \mathrm{P}_{3} \mathrm{Cl}$ type by an adjustment of β to 90°. A structure determination would be of interest to compare the structures.

Acknowledgments

Electrical measurements were made by Mr. J. L. Gillson. Lattice constants and space groups were determined by Mrs. C. M. Foris. Mr. D. W. Reutter and Mr. F. C. Diffendall are thanked for assistance in sample preparation and Dr. W. Jietschko is acknowledged for helpful discussions.

References

1. H. Puff, J. Berg, and H. Gotta, Naturwissenschaften 52, 452 (1965).
2. H. Puff, R. Skrabs, H. Gotta, and P. Blunk, Naturwissenschaften 52, 494 (1965).
3. H. Puff and H. Gotta, Naturwissenschaften 51, 535 (1964).
4. H. Puff and H. Gotta, Z. Anorg. Allg. Chem. 333, 280 (1964).
5. S. Prasad and L. P. Pandey, J. Ind. Chem. Soc. 41, 771 (1964).
6. S. Prasad and N. P. Singh, J. Ind. Chem. Soc. 42, 195 (1965).
7. P. Lemoult, C.R. Acad. Sci. 145, 1175 (1907).
8. H. Puff, Angew. Chem. 74, 659 (1962).
9. P. C. Donohue, J. Solid State Chem., accepted for publication.

[^0]: * Contribution no. 1915.

